
Simulation Explorer  
 
 
When opening this window, The Model Editor and the Parameters Editor windows become in 

read-only mode. 
 
In the course of each simulation, each actor try to get the higher value for its aim, defined as 
aim(a, s) = (1 - abs(GI(a))) * satisfaction(a, s) + GI(a) * (influence(a, s) - influence(a, a, s)) 
 where 
s = (sr1, …, srn) is any state of the organisation 
satisfaction(a, s) = ∑c ∈ A ∑r ∈ R solidarity(a, c) * stake(c, r) * effectr(c, sr), ce qu'il reçoit 
influence(a, b, s) = ∑r∈ R; a controls r ∑b ∈ A satisfaction(b, s), ce qu'il donne 
 
 
Initial states panel:  
For each relation, select the initial value and the lower and upper bounds to be used for the 

simulation. 
 
Actors' parameters panel:  
Distance min/max satisfaction: provides the distance between the situations providing lowest 

and the highest aim to the actor (measured as the Euclidian distance between the states of the 
relations, weighted by their respective stake) 

Scope: determines the actors’ capacity to distinguish the situations for the selection of the 
applicable rules. If scope = 1, any rule is applicable in any case; if scope = 3, one may 
consider that the actor has rules for bad, neural and good situations. High scope increases the 
size of the actor’s rule base and the length of simulations. 

Tenacity: more the tenacity is high, more the actor will explore the state space of the 
organization, before to resolve to exploit the acquired knowledge. High tenacity tends to 
make simulations longer and to provide higher satisfactions. 

Repartition of reward: distribution of the reward between the last and the penultimate applied 
rules. 

Type of rules:  
Self-learning: rules are rewarded in proportion of the amount of gain or loss they have 
brought and according to the rate of exploration wrt exploitation. 
Simple: rules have a fixed reward, without regard for the amount of the gain or loss they 
have brought, until an upper bound is reached. Rules are slowly forgotten of the oblivion 
value. 

Oblivion: see above simple rules. 
Reward: see above simple rules. 
Action range: (only for simple rules) reference value of importance of the actors’ actions. More 

the range is high, more the actor tends to explore. 
 
Do not forget to accept to validate the values. 
 
 



Upper left Frames 
 
Fuzzy stakes: select randomly the values of stakes within the bound given in the fuzzy stakes 

panel of the Parameters Editor window. The sum of stakes of each actor is kept to 10. 
 Fuzzy solidarities: idem 
With constraints: if not checked, constraints between relations are not applied. 
 
Number of steps: maximum number of step of the simulation. A simulation is said to converge 

whether it ends before this number. 
Number of runs: number of simulations to be runed. 
 
Do not forget to accept to validate the values. 
 
Run: launch the simulations. You have to specify the directory where a new directory <name of 

the model>-simulation-<date_Hour> will be created; simulation results will be stored there. 
Open previous simulation: allow to load the results of a previous simulation by selecting the 

<name of the model>-SimulationInitialParameters.xls file, within the directory containing the 
simulation results. 

View results: provide various curves on the relations states and actors’ satisfactions drawn from 
the simulation results. 

Synthesis results synthetic data about the simulation results: mean values and standard 
deviations over all the runs. 

State analysis: Open the State Analysis windows; in the Significant states frame, Convergence's 
state corresponds to the mean value of the relations states. 

Save report: generates a file including the value of the parameters, the synthetic data and the 
curves added by the user <name of the model>_(date)(heure)Synthesis.rtf. 
Clear report: remove the added curves. 
 

View Results window 
 
Results of imulations that do not converge are discarded. 
 
Convergence Option : the proportion of simulation that have converged. 
 
Actor Option 
Experiment: to get detailed curves, choose either toutes les simulations and a single one actor, 

or one of the simulations with tous les acteurs.  
If you choose toutes les simulations and tous les acteurs, you get bar charts. 
Variable: according to the selected variable, a bar chart or a curve is displated. 

On curves, the x-axis corresponds to the steps of the simulation(s), the y-axis to the actor(s)’ 
satisfaction or SeuilSatisfaction (his ambition threshold). 
With the "toutes les simulations" choice, the red curve is the means of the others. 
A ⊕ mark indicates the end of a simulation. 
Pointing the cursor gives the curve number and position of the pojnt.  

 
Relation Option: very similar to the Actor option.  
 
Add to report: add the display to the report. 
 
ZZZ: Long simulations of models including more than 10 actors can produce a stack overflow 

(cf. message on the consol). 
 

Specific Run 
Calls the core.orgNew.specificRun_1()  function, that you can program at your need. 



The Self-learning algorithm 
 

repeat  // The Global Simulation Loop 
 foreach actor a:   //all actors see the same world 
  a.action = a.selectAction ( ) 
 foreach actor a:   //they don't act in turn 
  performAction (a.action) 
Until (foreach actor a: a.ambitiont ≤ a.aimt) 
 
//SelectAction 

 // Perception of aim and updating gap 
aimt(a, s) = = (1 - abs(GI(a))) * satisfaction(a, s) + GI(a) * (influence(a, s) - influence(a, 
a, s)) 
deltaAim = aimt - aimt-1 
gap = (ambitiont-1 - aimt) / (ambitiont-1 - minAim) 
  // Updating ambition 
if (ambitiont-1 > aimt) 

if ((gap < (11 – tenacity) / 10) && (deltaAim = = 0)) 
  ambitiont = ambitiont-1 – ((1 – ExpRt–1) * (ambitiont-1 – aimt + 1)) / 100 

else ambitiont = ambitiont-1 – ((1 – ExpRt-1) * gap / 50 //about 
else  //a is already satisfied 
 ambitiont = ambitiont-1 + ((aimt – ambitiont-1) / 100) 
  // Updating exploration rate 
ExpRIns = 0.1 + (0.8 / (1 + eslope * (gap - abscissa))) 
ExpRt = ExpRt-1 * ExpRt-1 + (1 – ExpRt-1) * ExpRIns 
  // Updating action_range 
action_range = 2 * ExpRt //about 
  // Updating strength of last and penultimate selected rules 
  // SRt stands for the Rule Selected at time t 
SRt-1.strengtht = (1 - ExpRt) * SRt-1.strengtht-1 + ExpRt * autonomy *deltaAim 
SRt-2.strengtht = SRt-2.strengtht-1 + ExpRt * (1 - autonomy) * deltaAim 
  // Forgetting bad rules 
if (SRt-2.strengtht < 0) RuleBase.remove(SRt-2) 
  // Selecting the set M of rules applicable at time t 
 M.clear ( ) 
 foreach rule R in RuleBase 
  if (distance(R.situation, CurrentSituation < closenessThreshold)  
   M.add(R) 
  // Selecting an action 
if (M.isEmpty()) 
 SRt = (CurrentSituation(), (atRandom( )*action_range), 0) 
 RuleBase.add (SRt) 
else 
 SRt = ChooseOneOfThreeRulesWithMaximumStrength (M) 
return (SRt.action)	
  


